国产不卡视频一区二区三区,中文字幕亚洲一区,亚洲一本色道 AV,免费观看的AV在线播放

高考數學公式記憶順口溜

思而思學網

一、不等式

解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。

證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。

二、數列

等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。

數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,

取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

一算二看思而學教育想,猜測證明不可少。還有數學歸納法,證明步驟程序化:

首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。

三、立體幾何

點線面三位一體,柱錐臺球為代表。距離都從點出發,角度皆為線線成。

垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。

方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。

異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。

四、平面解析幾何

有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。

笛卡爾的觀點對,點和有序實數對,兩者-一來對應,開創幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。

四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。

解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。

五、集合與函數

內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。

復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。

函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;

正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。

兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;

求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。

冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,

奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。

六、復數

虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。

對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。

代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。

一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。

利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。

三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,

兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。

七、三角函數

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,

余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

熱門推薦

最新文章