高考數學怎么解題速度最快
1.熟悉基本的解題步驟和解題方法
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。
2.審題要認真仔細
對于一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,并從中找出隱含條件。
有些學生沒有養成讀題、思考的習慣,心里著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應特別注意,審題要認真、仔細。
3.認真做好歸納總結
在解過一定數量的習題之后,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對于類似的習題一目了然,可以節約大量的解題時間。
4.熟悉習題中所涉及的內容
解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。
因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做后面所配的練習,一刻也不要停留。
學習學不下去了可以看下這本書,淘寶搜索《高考蝶變》購買
5.學會畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對于提高解題速度非常重要。
6.先易后難,逐步增加習題的難度
人們認識事物的過程都是從簡單到復雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。
我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
7.限時答題,先提速后糾正錯誤
很多同學做題慢的一個重要原因就是平時做作業習慣了拖延時間,導致形成了一個不太好的解題習慣。所以,提高解題速度就要先解決“拖延癥”。比較有效的方式是限時答題,例如在做數學作業時,給自己限時,先不管正確率,首先保證在規定時間內完成數學作業,然后再去糾正錯誤。這個過程對提高書寫速度和思考效率都有較好的作用。當你習慣了一個較快的思考和書寫后,解題速度自然就會提高,及改正了拖延的毛病,也提高了成績。
高考數學解題技巧
方法一、調理大腦思緒,提前進入數學情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態準備應考。
方法二、“內緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
方法三、沉著應戰,確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然后穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之后做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。
方法四、“六先六后”,因人因卷制宜
在通覽全卷,將簡單題順手完成的情況下,情緒趨于穩定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行“六先六后”的戰術原則。
1.先易后難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2.先熟后生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之后,就可實施先熟后生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。
3.先同后異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力。
4.先小后大。小題一般是信息量少、運算量小,易于把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基礎。
5.先點后面。近年的高考數學解答題多呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為后面問題準備了思維基礎和解題條件,所以要步步為營,由點到面。
6.先高后低。即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。
方法五、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急于解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。
方法六、確保運算準確,立足一次成功
數學高考題的容量在120分鐘時間內完成大小26個題,時間很緊張,不允許做大量細致的解后檢驗,所以要盡量準確運算(關鍵步驟,力求準確,寧慢勿快),立足一次成功。解題速度是建立在解題準確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟,假如速度與準確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
方法七、講求規范書寫,力爭既對又全
考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。
方法八、面對難題,講究方法,爭取得分
會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。
對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。
如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。
2.跳步解答。
解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。
若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。
方法九、以退求進,立足特殊,發散一般
對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發思維,達到對“一般”的解決。
方法十、執果索因,逆向思考,正難則反
對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。
方法十一、回避結論的肯定與否定,解決探索性問題
對探索性問題,不必追求結論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。
方法十二、應用性問題思路:面?點?線
解決應用性問題,首先要全面調查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數據,此為“點”;綜合聯系,提煉關系,依靠數學方法,建立數學模型,此為“線”,如此將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景。