国产不卡视频一区二区三区,中文字幕亚洲一区,亚洲一本色道 AV,免费观看的AV在线播放

浙江杭州中考數學試卷難度

思而思學網

【摘要】對于廣大中考生來說,初中三年的努力拼搏,就是為了在中考中取得好的成績,為此思而學教育中考頻道幫大家搜集了杭州中考數學試卷難度,供大家復習時借鑒!

富陽郁達夫中學數學高級教師 孫建鋼

初看試卷感覺試題立足數學基礎,親近熟悉;動筆解題發現試卷內涵豐富,既考查數學基礎,也考查分析與解決問題的能力;做完試題感到試卷仍在繼續抑止“題海戰術”、“機械解題”,鼓勵學生不斷理解數學思想、積淀數學活動經驗,鼓勵教學能還學生必要的自主活動空間,呼喚當前數學教學需要不斷地改進。

一、立足數學基礎,考查數學能力

1.人性化的試卷設計

試卷起點低,梯度緩,難度適當。起步題都是三步之內就能完成的數學題;各類題型基本由易到難安排,最后的4道解答題都分成若干小題,小題之間“臺階”式設計;整卷基礎題至少占70%,新穎題大約只占10%。試卷設計能讓學生充分發揮自己真實的數學水平。

2.有內涵的試題設計

試題蘊含著對數學基本思想,以及觀察、實驗、猜測、計算、推理驗證等活動過程的考查。如第10題主要考查數形結合思想,數學直覺等;第9題則主要是計算與推理的考查;第16,20題都涉及分類討論。

試題蘊含著對數學概念理解,數學方法把握、思維能力水平的考查。如第19題,含重要的數學概念,涉及重要的數學方法;第12題雖然是基本題,但涉及兩個概念一個方法,若有一點未把握,就會導致失分;再如第14,15題,雖然學生易于落筆,但如果對平均數差的本質不理解,對先代數式化簡,后代入求值的方法未把握,就會落入數的直接計算,即使做對,也會耗去較多時用;又如第6題,代數幾何相互作用,化簡與推理有序使用,足以考查學生的思維水平。

試題蘊含著對平時學習方式、個性品質的考查。如第10題,第16題,第17題等,都傳達著同一個期望:希望學生平時學習開拓解題思路,優化解題方法,善于反思歸納。

二、呼喚教學改進,增強學的研究

試卷第21題,第(1)小題取材于課本,如果我們是重視課本的,一般都能解決;第(2)小題需要利用合情推理,運用否定命題的通法,通過特例情況的概率計算理性地作出回答,如果我們的教學重視學生的自主學習,注重數學通法的概括小結,學生應該也能解決;第(3)小題要求設計公平性的規定,如果我們的教學能關注初中概率概念的本質、概率學習的目標,學生應該能理解公平性的含義,找到切入口,先制定規定,再驗證公平;而此題中的設計規定是一個開放題,如果我們的教學能經常地設計學生的探究活動,學生也應該能調用知識、經驗,通過嘗試,在開放的回答中找到一個方案,并通過概率計算,驗證方案的公平性。

如果學生平時依賴于簡單地模仿、死記硬背的學習方式,缺乏理解性學習;教師平時不注重課本資源的開發和創新,不注重學生的獨立思考,僅以學生負擔為代價,靠“機械訓練”,“題海戰術”,必然會造成學生“望題興嘆”!

由此,可以認為今年試卷內涵著對當前數學課堂教學需要不斷地改進的呼喚。具體有:

1.用教材,重過程,求理解

回歸課本,用好課本。今年試卷中,有一定的題直接源于教材的,像第8題根據三視圖求幾何體,第15題求旋轉體的表面積,第18題解不等式組和解一元二次方程,第21題求概率,第22題(1)題在等腰三角形中求角度問題等,而試卷設計的題目其本質都是課本中出現的基本內容、基本原理、基本方法和基本問題。

注重學生學習過程,給學生自主活動空間,增加學生數學基本活動體驗。第21題其實已經在發出這一呼喚。而發出這種呼喚的試題并不少,如第23題,以正方形為基本圖形,以圖形的對稱性為外顯形式,以動點為載體,通過文字語言、圖形語言和符號語言呈現條件與所求,學生具有一定的數學探究經驗,善于思考,就能面對問題主動嘗試、探索形成解題思路。類似的試題還有第9題、第10題,第13題、第15題、第20題等。

追求理解數學。要實現學生對數學重要概念的理解與掌握,需要在教學中,創造條件讓學生運用數學知識與方法,分析與解決問題,需要通過問題解決,引導學生積極地進行數學思考,促成理解,獲得活動經驗。今年試卷中的第9,15,17,22題等都蘊含著這一用意。因此數學教學需要正確看待解題訓練,能追求對概念本質的理解。

2.夯基礎,重反思,顯通法

試題立足于常規,符合課標要求。低層次的技巧、有擦邊嫌疑的知識,在試卷中都沒有出現,而像“因式分解”類的工具性知識,則放在某些題的解決過程之中,像“建立目標函數”等重要知識與方法,則在試卷中多次出現。這足以表明,我們的數學教學需要夯實基礎,關注通性、通法。第17,22題等都是常規題,但內涵著教學導向,試題發出了一種呼喚:教學要擯棄機械解題,引入反思提煉。如第17題提出了“連結QD,在新圖形中,你發現了什么,請寫出一條”,意就在此。又如第22題:先求解兩道常規題,①是幾何題,②是代數題。接著要求“找出兩道題的共同點”,它與第17題所用的“發散思維”相反,是概括本質,揭示出“萬變不離其宗”的共性。

總之,正確理解新課標的理念,把握教材,注重學生學的研究,并做好反思,會有助于改進教學方式,減輕學生過重負擔,提升教學實效。

中考對于廣大初中生是人生的一次重要的考試,希望大家能夠通過我們提供的杭州中考數學試卷難度,全力復習,讓自己在中考中取得好的成績!

杭州中考語文試題難度點評

杭州中考科學試題難度解析

熱門推薦

最新文章